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Abstract

This paper presents numerical results of a refined dynamic model for the vibration of atomising discs. The atomising disc

is modelled as a thin Kirchhoff plate. Centrifugal and gyroscopic effects of the spinning disc are included in the dynamic

model of the disc. As the molten metal spreads out on the disc surface, the inertia force and the self-weight from it as

moving loads excite the disc to vibration even if the disc is perfectly symmetric.

The influence of the rotating speed of the disc and the mass flow rate of the metal stream on the dynamics of the disc is

investigated. It is shown that the disc motion consists of three stages, a downward deflection, non-stationary vibration and

finally stationary vibration with multiple frequencies. The magnitude of motion decreases with increasing disc speed but

increases with increasing mass flow rate.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Discs are a basic mechanical element widely used in engineering. Examples are plentiful and include
computer discs, CDs and DVDs, circular saws, disc brakes, turbine discs and so on. Frequently these discs are
subjected to loading that moves relative to the discs and are often treated as moving-load problems. Moving
loads tend to excite vibration of larger amplitude and/or wider frequency range or higher frequencies and
destabilise a dynamic system than conventional non-moving loads.

Mote [1] studied the vibration of a stationary disc subjected to a simple, point-wise rotating load. Iwan and
Moeller [2] studied the vibration of a spinning disc subjected to a simple, point-wise stationary load. Ono et al.
[3] introduced the follower force and a bending couple to a spinning disc. Ouyang and Mottershead [4]
introduced a rotating bending couple due to friction to the vibration of a stationary disc. In addition to the
above-mentioned works on disc vibration caused by loading moving in the circumferential direction,
Weisensel and Schlack [5] conducted a comprehensive study of the vibration of a stationary disc subjected to
radially (as well as circumferentially) moving loads, and Huang and Chiou [6] investigated the vibration of a
spinning disc subjected to radially moving loads. Mottershead [7] reviewed a large number of papers on disc
vibration excited by moving loads.

Two major types of applications of the moving-load problems of discs have received extensive attention.
They are the computer disc problem [3,6,8,9] and the circular wood saw problem [10,11]. Parker [12] and
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.03.069

ess: h.ouyang@liverpool.ac.uk.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.03.069
mailto:h.ouyang@liverpool.ac.uk


ARTICLE IN PRESS
H. Ouyang / Journal of Sound and Vibration 308 (2007) 699–708700
Parker and Sathe [13] extended the work on spinning discs to spinning disc-spindle systems. Ouyang et al.
[14,15] tackled disc brake vibration and squeal as a moving-load problem.

The vibration of atomising discs was first studied by Ouyang [16]. The disc was modelled as a Kirchhoff
plate and the molten metal stream (called melt) as a moving (growing) distributed mass. The initial excitation
is supplied by the initial, off-centred impact of the melt descending onto the disc. It was found that the
vibration of atomising discs was not stationary with multiple time-dependent frequencies and the transverse
vibration of the disc grows in magnitude as the metal stream spreads out on the disc surface. In that model, the
melt presents only a growing mass as it spreads out. The growing weight of the mass has been neglected. This
is now considered in the current model. In addition, the disc vibration is now excited by the weight of the melt.
The data of simulated melt flow [17] are re-fitted. Finally, time-dependent Fourier transform is used to reveal
the non-stationary nature of the disc vibration.
2. Centrifugal atomisation

Centrifugal atomisation is carried out in an axial-symmetric enclosure. A schematic view of such a device
using a spinning disc is shown in Fig. 1.

The liquid metal (melt) stream flows down from an inlet and drops onto the surface of a flat metal
(atomising) disc that is bolted to the shaft through a coupler and spinning at very high speed. The disc may be
considered to be clamped at a very small inner radius a. Due to the centrifugal force acting on it, the liquid
metal stream is broken into a spray of metal droplets that fly off the disc and become powder particles when
cooling down. This is an efficient way of producing high-quality powders. As the melt cools down, part of it
gradually solidifies prematurely and accumulates on the disc. As the process goes on, more solid metal
accumulates and forms a ‘skull’ on the disc. The skull hinders the melt flow and droplet flight in the outward
radial direction as a barrier and thus reduces yield of powders. The melt on the disc causes it to vibrate. The
vibration is rather severe in the case of the centrifugal atomising device at the University of Liverpool.

One shortcoming of Ouyang’s [16] study is the assumption of the initial impact that has to be off centred to
initiate vibration. If the nozzle is perfectly aligned with the centre of the disc, then the melt will descend onto the
centre of the disc and consequently the vibration of the disc cannot be set up by the initial impact assumed in
Ref. [16]. As the melt spreads out, it not only adds a growing inertia force to the disc but also applies a growing
weight force to the disc. This growing weight will start the vibration in the disc. The whole system has time-
dependent growing mass (moving mass) and external load (growing weight force on the disc from the melt).
3. Dynamic model

The metal flow and the formation of the skull on the disc is a complicated process. It depends on the flow
rate of the melt, the rotating speed of the disc, the heat transfer coefficient at the liquid–disc interface and the
residence time of the melt on the atomising disc, the temperature transfer characteristics and so on [17].
melt
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Fig. 1. Schematic diagram of powder production using an atomising disc.
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Apparently, a number of physical processes are going on in centrifugal atomisation. The assumptions
that must be made in this paper include: (1) there is no thermal and mechanical coupling, (2) the shape
and the rate of the melt flow are known a priori, for example, from the simulations of Ref. [17], (3) the melt
flow is axial-symmetrical, (4) the melt flow on the disc provides inertia, but no stiffness or damping
to the system, (5) there is no interaction between the airflow and the melt flow or between the airflow and the
disc vibration and (6) the disc is modelled as a flat, annular, thin (Kirchhoff) plate of equal thickness with
clamped-free boundaries. Assumption (3) is largely true at reasonably high mass flow rate. However, a slight
deviation from axial symmetry will result in extra excitation and further mathematical complication,
which will be considered in future. The interaction mentioned in assumption (5) should exist for an atomising
disc spinning at high speeds, as seen from results of other spinning discs [9,18], but is neglected in this
paper. By removing any of the above assumptions, the system becomes increasingly complex and more
representative of reality.

The disc modelled as a Kirchhoff plate and the melt are shown in Fig. 2 below.
In Fig. 2, rm(t) and hm(r, t) are the instantaneous radius and height of the melt. Both vary with time initially

and then become steady afterwards. The dashed line represents the surface of melt in liquid state and the solid
line the surface of the solidified melt (skull) in solid state. The mechanics of the disc is described in a space-
fixed cylindrical coordinate system whose origin is located at the centre of the disc. The radial, circumferential
and axial coordinates are denoted by r, y and z, respectively.

The equation of motion of the disc subjected to an external distributed load p is (adapted from Ref. [2])

rh
q2w
qt2
þ 2O

q2w
qt qy

þ O2 q2w

qy2

� �
þDr4w,

� h
q

r qr
rsr

qw

qr

� �
� h

sy
r2

q2w

qy2
¼ pðr; y; tÞ, ð1Þ

where r, h, D, O and p are the mass density, the thickness, the flexural rigidity, the rotating speed and the
external distributed load of the disc, and

r4 ¼
d2

dr2
þ

d

rdr
þ

d2

r2dy2

� �2

. (2)

The in-plane stresses sr and sy in Eq. (1) due to disc rotation [2,3] are:
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Fig. 2. Dynamic model of the atomising disc.
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where

d1 ¼
1þ n
8

ðn� 1Þa4 � ð3þ nÞb4

ðn� 1Þa2 � ð1þ nÞb2
rO2,

d2 ¼
1� n
8

ð1þ nÞa2 � ð3þ nÞb2

ðn� 1Þa2 � ð1þ nÞb2
rO2a2b2

ð4Þ

and n is the Poisson’s ratio of the disc.
In the region where the melt is present on the disc surface, the resultant distributed load has two sources,
�rmðr; tÞhmðr; tÞðq

2w=qt2Þ due to the inertia force and �rm(r, t)hm(r, t)g due to its weight, where rm is the
density of the liquid/solid metal on the disc and g ¼ 9.8m s�2. Hence,

p ¼
�rmðr; tÞ hmðr; tÞ q

2w
qt2
þ g

h i
aorprmðtÞ;

0 rmðtÞorob:

8<
: (5)

Suppose that the evolution of the melt flow (the height hm and radius rm of the profile) on the disc surface
with time is known. Then the distributed load p can be expressed as a function of w and/or its derivative. This
information may be obtained through measurement, which is very difficult to conduct owing to various on-
going physical processes involved, or through numerical simulations, for example, carried out by Ho and
Zhao [17].

The solution of Eq. (1) can be written as

wðr; y; tÞ ¼
X1
m¼0

X1
n¼�1

fmnðr; yÞqmnðtÞ, (6)

where the modes of the unloaded disc are:

fmnðr; yÞ ¼ RmnðrÞe
iny

ðm ¼ 0; 1; 2; . . . ; n ¼ 0; �1; 1; �2; 2; . . .Þ ð7Þ

As there is no analytical solution for Rmn(r), a mathematical function is normally assumed, sometimes
with coefficients determined through an energy method or Galerkin’s method. Hutton et al. [10] used
polynomial functions for Rmn(r). Huang and Chiou [6] used ‘beam functions’ instead and argued that it would
be easier to determine the critical speed of the disc. Polynomial functions are selected for Rmn(r) of the disc in
this paper as [19]

RmnðrÞ ¼ ðamn þ bmnrþ cmnr2Þðr� aÞmþ2, (8)

where the coefficients amn, bmn and cmn can be determined at the free boundary of the disc [19]:
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and the normalisation of

RmnðbÞ ¼ 1. (10)

Eq. (9) means that the shear force and the bending moment must vanish at the outer radius of the disc.
Eq. (11) is scaling the Rmn(r) to unity at the outer radius of the disc. Notice that ‘i’ in the exponential function
in Eq. (7) and subsequent equations stands for

ffiffiffiffiffiffiffi
�1
p

. The solution of amn, bmn and cmn is complicated and is
determined using a symbolic software package.
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4. Numerical solutions

Galerkin’s method is usually used to convert the equation of motion of the physical coordinate, Eq. (1), into
equations of motion of its modal coordinates. This is done by substituting Eqs. (3)–(6) into (1), multiplying the
resultant equation by f̄klðr; yÞ (k ¼ 0, 1, 2,y; l ¼ 0, �1, 1, �2, 2,y) and then integrating it over the disc area
(the bar on top of a symbol represents its complex conjugate). It follows that

X1
m¼0

Z
rh €qmlðtÞ þ i2lOrh _qmlðtÞ

(

þqmlðtÞ D
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� �2

� h
d

rdr
rsr

d

dr
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#
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Further mathematical manipulation yields

X1
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� �
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where
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Since qkl(t) is complex, it would be better to replace it with its real part, akl, and its imaginary part, bkl. In so
doing, Eq. (12) becomes

X1
m¼0

f½Akml þ BkmlðtÞ�€amlðtÞ � Ckml
_bmlðtÞ þ FkmlamlðtÞg ¼ f k0ðtÞ,

X1
m¼0

f½Akml þ BkmlðtÞ� €bmlðtÞ þ Ckml _amlðtÞ þ FkmlbmlðtÞg ¼ 0. ð14Þ

A finite number of terms in the infinite series in Eq. (14) are actually needed to arrive at reasonably accurate
solutions.

Obviously there is no closed-form solution for Eq. (14), because of fk0(t) and in particular Bkml(t). A fourth-
order Runge–Kutta algorithm is developed to obtain numerical solutions of Eq. (14) for each retained modal
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coordinate. The vibration of the disc is initiated by the melt flowing outward in the radial direction. The initial
displacement and velocity of the disc in the z direction are taken to be zero.

Since the mass of the system varies with time, the system does not possess constant frequencies. The non-
stationary nature of the system can be characterised by the time-dependent Fourier transform. The time-
dependent Fourier transform of a discrete time series x(k) is [20]

X ðeio; nÞ ¼
X1

k¼�1

xðn� kÞW ðkÞe�iko, (15)

where W(k) is a suitably chosen window sequence. The display of the magnitude of X as a function of
continuous variable o (vertical axis) and n (horizontal axis representing time) is called a spectrogram [20],
which reveals the time-dependent frequency contents in the discrete time series x(k).

The varying ‘frequencies’ are in the order of hundreds or thousands of radians per second in the present
problem. Therefore the time step length in the numerical integration must be very small (in the order of
10�5 s). As a result, the computation may take a fairly long time.

5. A numerical example

A real atomising disc is selected for dynamic analysis. The disc is made of pure copper. The material data
are taken to be: Young’s modulus E ¼ 130GPa, Poisson’s ratio n ¼ 0.34, r ¼ 8920 kgm�3. Its geometrical
data are h ¼ 0.003m, a ¼ 0m (the centre of the disc is clamped), b ¼ 0.05m, c ¼ 0.002m, r0 ¼ 0.003m. The
model metal is titanium. Its density at liquid and solid states is 4100 and 4600 kgm�3, respectively. No
intermediate values of the density of the modal metal are considered. The mass flow rate _M may vary.
H ¼ 0.015m. Most of the above data are taken from Ho and Zhao (2004). Dt is taken to be 2.5� 10�5 s.
Different time step sizes and different number of retained modes are numerically experimented to establish a
sufficiently small time step and a sufficient number of retained modes in subsequent computations.

Based on the numerical results reported in Ho and Zhao [17], approximate formulas for hm, rm and rm were
derived in Ref. [16] and are now (partly) re-fitted in this paper. They are:

rmðtÞ ¼
0:002ð1þ 5:33� 106 _Mt=rlÞ 0oto1:885� 10�7 rl= _M;

0:004þ ð0:01þ 0:0525tþ 0:0125t2Þf ð _MÞ 1:885� 10�7 rl= _Mpt;

(

At apro0:002 : hmðr; tÞ ¼
79600 _Mt=rl to1:885� 10�7 rl= _M ;

H 1:885� 10�7 rl= _Mptp1;

(

at 0:002pro0:004 : hmðr; tÞ ¼
2:122� 107 _Mtð0:004� rÞ=rl to1:885� 10�7 rl= _M ;

4ð0:004� rÞ 1:885� 10�7 rl= _Mpto1;

(

at 0:01prormo0:035 : hmðr; tÞ ¼ 0:001þ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� 0:01Þðrm � rÞ

ph i
� f1� expð�0:9tÞ þ 0:32½1� expð�9tÞ�ggð _MÞ tp1,

at r4rmðtÞ : hmðr; tÞ ¼ 0 tp1;

elsewhere : hmðtÞ ¼ 0:002½1� expð�9tÞ�f ð _MÞ1:885� 10�7 rl= _Mptp1;

where

f ð _MÞ ¼ 0:52þ 0:55 _M þ 3:5 _M
2
,

gð _MÞ ¼ 1:147� 1:488 _M þ 0:178 _M
2
.

Centrifugal atomisation relies on the centrifugal force produced by the fast rotation of the atomising disc.
So the rotational speed O is first studied. The vibration of the disc at (b, 0) at three different values of O under
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a constant mass flow rate of the melt is shown in Fig. 3 (the units of w and t are metres and seconds,
respectively).

The flow of the melt on the disc surface consists of three stages: (1) the downward deflection due to the
initial descending weight of the melt; (2) growing, non-stationary vibration due to the growing mass and
weight as the melt spreads out and gets to the radius of the disc; (3) the steady vibration shortly after the
melt reaches the disc radius. These three stages of motion are also present at higher mass flow rates, shown in
Figs. 4 and 5. It is also clear that as the disc speed O increases, the disc vibration decreases as the centrifugal
force is known to be stabilising. This is consistent with Ref. [16].

As the melt spreads out on the disc surface, the total mass of the whole system increases with time.
Vibrations in this stage are apparently unsteady. It is expected that the frequencies will decrease with time as a
result. In the third stage of vibration, the flow of the melt on the disc becomes steady and it is expected that the
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Fig. 4. Disc vibration w(b,0,t) at _M ¼ 0:2 kg s�1: (a) O ¼ 0; (b) O ¼ 2000 rad s�1; and (c) O ¼ 5000 rad s�1.
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Fig. 3. Disc vibration w(b,0,t) at _M ¼ 0:1 kg s�1: (a) O ¼ 0; (b) O ¼ 2000 rad s�1; and (c) O ¼ 5000 rad s�1.
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Fig. 5. Disc vibration w(b,0,t) at _M ¼ 0:3 kg s�1: (a) O ¼ 0. (b) O ¼ 2000 rad s�1. (c) O ¼ 5000 rad s�1.
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disc vibration will become steady as well. This is demonstrated by the time-dependent Fourier transforms
(frequencies in Hz over time in second) of some of the above results in Fig. 6, where the inclined lines with
negative gradient (unsteady stage) finally settle to the horizontal lines (steady stage). Notice that there is a line
with increasing gradient in each of the plots. But all of them have a tiny contribution to time-domain results
(shown in a much lighter colour) and are likely to be a result of numerical integration error. This can be
illustrated in Fig. 7 by a conventional Fourier transform to the last 2048 pieces of time-domain data of the
numerical results of Fig. 6(d).

Next the mass flow rate of the melt is studied since it influences the flow (skull formation in particular) on
the disc [18]. From Figs. 3–5, one can see that the higher the mass flow rate the sooner the second and the third
stages of vibration take place, which is expected. It is also clear that the higher the mass flow rate, the greater
the vibration magnitude because of the higher weight of the melt acting on the disc in a unit of time. This is
also consistent with the finding made in Ref. [16] where the melt descended onto the disc surface as an impact.

It has been noted in Section 3 that the numerical results are obtained based on a number of rather restrictive
assumptions, which should be gradually lifted in the subsequent work. There may be more than one course of
action. A priority is to include the thermal loading from the melt to the disc and the influence of the
temperature on the material properties of the disc. Alternatively, a more accurate plate theory such as Mindlin
plate theory or Reissner plate theory may be used to replace the current Kirchhoff plate theory. A third option
is to allow mild deviation of axial symmetry of the melt flow and hence introduce a moving load in the
circumferential direction (in addition to the moving load in the radial direction). This will add extra
mathematical complexity to the dynamic model and should yield more interesting results. An experimental rig
of a centrifugal atomisation for the purpose of vibration testing is being designed. Experimental work will be
conducted in the near future.
6. Conclusions

The vibration of an annular disc clamped at the inner radius and free at the outer radius subjected to a
radially growing, distributed mass is investigated in this paper. This dynamic system is meant to represent the
atomising disc in the production of metal powders using centrifugal atomisation. The equation of motion of
the dynamic system is derived based on a number of restrictive assumptions. Several findings have been made
from the solutions of the equation of motion of the system as follows.
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Fig. 6. Time-dependent Fourier transforms (from the beginning of the second stage to 1 second): (a) O ¼ 0, _M ¼ 0:2 kg s�1;
(b) O ¼ 5000 rad s�1, _M ¼ 0:2 kg s�1; (c) O ¼ 5000 rad s�1, _M ¼ 0:1 kg s�1; (d) O ¼ 5000 rad s�1, _M ¼ 0:3kg s�1.
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(1)
 The disc motion consists of three stages: a downward deflection, non-stationary vibration and finally
stationary vibration.
(2)
 There are multiple frequencies that decrease with time in the non-stationary stage of vibration.

(3)
 The disc vibration decreases with increasing disc speed.

(4)
 The disc vibration increases with increasing mass flow rate of the melt.
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